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Summary

The three-dimensional spatial structure of a methylene-acetal-linked thymine dimer present in a 10 base-
pair (bp) sense–antisense DNA duplex was studied with a genetic algorithm designed to interpret NOE
distance restraints. Trial solutions were represented by torsion angles. This means that bond angles for
the dimer trial structures are kept fixed during the genetic algorithm optimization. Bond angle values
were extracted from a 10 bp sense–antisense duplex model that was subjected to energy minimization
by means of a modified AMBER force field. A set of 63 proton–proton distance restraints defining the
methylene-acetal-linked thymine dimer was available. The genetic algorithm minimizes the difference
between distances in the trial structures and distance restraints. A large conformational search space
could be covered in the genetic algorithm optimization by allowing a wide range of torsion angles. The
genetic algorithm optimization in all cases led to one family of structures. This family of the methylene-
acetal-linked thymine dimer in the duplex differs from the family that was suggested from distance
geometry calculations. It is demonstrated that the bond angle geometry around the methylene-acetal
linkage plays an important role in the optimization.

Introduction

Genetic algorithms belong to the class of global opti-
mization algorithms (Holland, 1975; Goldberg, 1989). A
population of trial solutions is iteratively manipulated by
a series of genetic operators, such as selective reproduc-
tion, recombination and mutation, to satisfy an objective
function. These algorithms receive more and more atten-
tion in the field of conformational analysis of biomacro-
molecules, such as proteins and nucleic acids. Basically,
two paths are followed. In the first one the genetic algo-
rithm search is guided by an energy criterion supplied by
an implemented molecular force field (McGarrah and
Judson, 1993; Brodmeier and Pretsch, 1994; Sun, 1995).
The second path directs the search with the use of experi-
mental data (Blommers et al., 1992; van Kampen et al.,
1996). Usually, these experimental data are based on

nuclear magnetic resonance experiments (Wüthrich, 1986).
One of the most widely used techniques in determining
the three-dimensional structure of a molecule is multidi-
mensional nuclear Overhauser enhancement (NOE) spec-
troscopy (Jeener et al., 1979; Macura and Ernst, 1980;
Macura et al., 1981). NOE peaks provide information
about the spatial arrangement of protons in the molecule.

In this paper, the conformational analysis of a thymine
dimer containing a methylene-acetal linkage, O3'-CH2-
O5', instead of the regular phosphodiester linkage, O3'-
PO2

−-O5', is presented. Methylene-acetal-linked nucleotides
provide interesting test cases for conformational analysis
techniques, since their backbone conformation is relative-
ly well defined, owing to the additional NOEs of the
methylene-acetal protons. The initial interest in the
methylene-acetal linkage was focussed on its potential
application as an antisense DNA oligonucleotide to in-
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hibit the expression of selective genes. In order to study
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Fig. 1. Flow chart of a genetic algorithm. In the crossover block, x indicates a breakpoint. Parts of the bit strings after this point (one-point
crossover) are exchanged. In the mutation block, x denotes the bit that will be changed. For the sake of simplicity, these basic forms of crossover
and mutation are depicted in the figure.

the affinity of the antisense nucleotide for the sense (un-
modified complementary) nucleotide, the methylene-
acetal-linked thymine dimer, T^T, was built in decamer
duplexes. Comparative NMR studies of the modified
duplexes and the corresponding unmodified duplex sug-
gested regular B-DNA structures (Gao et al., 1992;
Quaedflieg et al., 1993). The two T^T dimers in the
modified duplex 5'-d(GCGT^TTT^TGCG)•d(CGCAA-
AACGC)-3' were also studied separately and in more
detail. For the T4^T5 dimer, 63 proton–proton distance
restraints were used in a distance geometry calculation
(Havel and Wüthrich, 1984). The structures that were
found could be classified in one family. On the basis of
torsion angles, it was concluded that this family oc-
curred in a regular B(I)-DNA conformation. However,
the ε, ζ and β torsion angles were somewhat biased to-
wards the less common B(II)-DNA conformation. The
indication of DNA families mentioned in this study
corresponds with the definition by Privé et al. (1987),
i.e., B(I) has ε (t) and ζ (g−), B(II) has ε (g−) and ζ (t)
and, in addition, the β of B(II) is somewhat smaller than
the β of B(I).

In this study a genetic algorithm is used to minimize
the violations of the available distance restraints. The
variables to be optimized, in this case torsion angles, are
allowed to vary in a wide range in order to get a good
impression of the conformational space that is spanned
by the distance restraints. These ranges cover all B-DNA-
type rotamers, as well as other, less common, rotamers.
In the genetic algorithm optimization, bond angle geo-
metries can be kept fixed, while in the distance geometry
calculations the embed algorithm can distort these geo-
metries. It is demonstrated that the bond angle geometry
has an important effect on the resulting conformation.

Materials and Methods

Genetic algorithms
In genetic algorithm optimization, trial solutions are

encoded on bit strings. The parameters to be optimized
are assigned to bit fields on the bit string. The first stage
of a genetic algorithm run is the initialization. A popula-
tion of randomly initiated trial solutions is created. The
parameters on the bit string receive a value between the
lower and upper bound of the allowed range. The initia-
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lization stage is led by the random seed value of a ran-
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Fig. 2. Torsion angle representation of a methylene-acetal-linked thymine dimer. The protons attached to the carbon atoms are not shown. CM
is the carbon that replaces the original phosphorus atom. CM has two protons (HMA and HMB) attached to it.

TABLE 1
BOND ANGLES (°) OF THE METHYLENE-ACETAL-LINKED THYMINE DIMER DETERMINED IN VARIOUS WAYS

Bond angle GA DG DGII DGII (10%)

C3'-O3'-CM 116.3 120.5 (1.1) 115.6 (0.3) 112.5 (4.4)
O3'-CM-O5' 110.4 108.5 (0.7) 109.6 (0.1) 111.1 (2.4)
O3'-CM-HMA 111.7 118.0 (0.5) 123.5 (1.1) 108.1 (4.6)
O3'-CM-HMB 108.3 102.6 (0.7) 105.2 (0.3) 111.3 (7.0)
HMA-CM-HMB 108.1 107.0 (0.6) 103.8 (0.5) 107.4 (4.4)
O5'-CM-HMA 109.6 105.9 (1.0) 104.3 (0.4) 111.1 (6.3)
O5'-CM-HMB 109.2 115.4 (1.0) 110.0 (0.1) 107.9 (4.3)
CM-O5'-C5' 112.4 114.3 (0.9) 108.0 (0.2) 111.2 (4.3)
O5'-C5'-H5' 110.4 106.0 (1.0) 109.0 (0.2) 107.8 (2.8)
O5'-C5'-H5'' 110.8 111.5 (0.9) 109.2 (0.2) 110.7 (4.9)
H5'-C5'-H5'' 109.0 109.2 (1.0) 109.3 (0.2) 107.3 (2.2)
O5'-C5'-C4' 110.4 111.5 (1.0) 109.6 (0.1) 109.7 (2.1)

GA: genetic algorithm; DG and DGII: average bond angles (with the standard deviation in parentheses) of the 10 best structures resulting from
initial distance geometry calculations and from calculations with the second-generation distance geometry package; DG (10%): the results of DGII
calculations for the restraints set in which the restraints were relaxed by 10%.

dom generator. Each of the bit strings in the population
receives a quality value which, in genetic algorithm termi-
nology, is called fitness. This is the evaluation stage. The
fitness, which should be maximized, is calculated in an
objective function. The next stage in the optimization is
selection. Here a new population, called a copy pool, is
created by allowing only strings that fulfill a certain selec-
tion criterion. Usually, the probability of a bit string to
be selected is proportional to its fitness. Selection exploits
the information content of bit strings. As soon as the copy
pool contains the same number of bit strings as the orig-
inal population, the bit strings in the copy pool are sub-
jected to the crossover operator. This operator exchanges

parts of bit strings or bit fields between (randomly) se-
lected pairs of bit strings. Crossover takes place with a
certain probability. By spreading high-quality parts of bit
strings through the population, important information is
preserved. Crossover is followed by mutation, which
swaps the value of single bits with a certain probability.
By mutating bit strings, new information can be intro-
duced in the population. Hence, crossover and mutation
explore the information that is present in the search space.
After crossover and mutation the copy pool replaces the
initial population. The new population can be subjected
to a new cycle of evaluation, selection, crossover and
mutation. Such a cycle is called a generation in genetic
algorithm terminology. Usually, in genetic algorithm
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optimization the iteration through generations is done

TABLE 2
PROTON–PROTON DISTANCE RESTRAINTS FOR THE METHYLENE-ACETAL-LINKED THYMINE DIMER

Proton 1 Proton 2 Upper bound
(Å)

Lower bound
(Å)

Proton 1 Proton 2 Upper bound
(Å)

Lower bound
(Å)

T4 H6 T5 H6 4.549 9.990 T5 HB T4 H3' 2.351 02.619
T5 HB T4 H6 3.876 9.990 T2 HA T4 H3' 2.869 02.932
T4 H3' T4 H6 3.263 3.465 T2 H4' T5 H5'' 2.331 02.673
T4 H5' T4 H6 3.775 6.011 T4 H4' T4 H2' 3.243 04.865
T4 H4' T4 H6 3.640 7.431 T4 H3' T4 H5' 2.989 09.990
T4 H5'' T4 H6 3.538 4.320 T4 H3' T4 H4' 2.757 02.854
T4 H2'' T4 H6 3.101 3.566 T4 H3' T4 H5'' 2.660 02.822
T4 H2' T4 H6 2.327 2.618 T4 H3' T5 H5'' 4.248 04.335
T4 H6 T5 H7 3.189 3.446 T4 H3' T4 H2'' 2.664 03.000
T4 H6 T4 H7 2.824 2.910 T4 H3' T4 H2' 2.452 02.658
T4 H1' T5 H6 3.356 3.976 T4 H3' T5 H7 3.878 04.919
T5 HB T5 H6 3.919 4.023 T4 H3' T4 H7 4.943 09.990
T4 H3' T5 H6 3.639 4.193 T5 HB T5 H5' 3.293 03.512
T5 H4' T5 H6 3.979 4.913 T5 HA T5 H5'' 2.568 02.638
T5 H5' T5 H6 3.938 4.936 T5 HB T5 H5'' 2.987 03.279
T5 H5'' T5 H6 4.017 4.835 T5 HB T4 H2' 3.326 04.181
T4 H2'' T5 H6 2.463 2.750 T5 HB T5 H7 4.590 09.990
T5 H6 T5 H2'' 2.796 3.089 T4 H7 T4 H2'' 4.603 06.202
T5 H6 T5 H2' 2.234 2.513 T5 H7 T4 H2'' 3.153 03.498
T4 H2' T5 H6 2.940 3.154 T5 H7 T5 H2'' 5.319 09.990
T5 H6 T5 H7 2.967 3.071 T5 H7 T5 H2' 4.850 09.990
T5 HB T4 H1' 3.566 9.990 T5 H7 T4 H2' 3.035 03.070
T5 HA T4 H1' 3.547 8.958 T4 H7 T4 H2' 3.835 05.958
T4 H1' T4 H3' 3.223 4.036 T5 H7 T4 H7 4.371 09.990
T4 H1' T5 H5'' 3.808 4.403 T5 H3 T5 H3 3.000 05.000
T4 H1' T4 H2'' 2.471 2.647 T5 HB T5 H2'' 4.000 20.000
T4 H1' T4 H2' 2.892 2.986 T5 HB T5 H2' 4.000 20.000
T4 H1' T5 H7 3.898 4.985 T5 HB T4 H2'' 3.500 07.000
T5 H1' T5 H3' 3.661 4.675 T5 HB T4 H2' 2.700 06.000
T5 H1' T5 H2'' 2.473 2.587 T5 HA T4 H2'' 3.500 07.000
T5 H1' T5 H2' 2.898 3.033 T5 HA T4 H2' 2.700 06.000
T5 H1' T5 H7 4.815 6.082

until no further improvement of the trial solutions is
observed. Figure 1 shows a flow chart of a genetic algo-
rithm.

Representation
In the present study trial structures for the genetic

algorithm are represented by torsion angles. This means
that bond lengths and bond angles are kept fixed. The
backbone is represented by the torsion angles α, β, γ, ε
and ζ. The sugar ring is represented by the pucker ampli-
tude φ and a pucker phase angle P (Altona and Sundara-
lingam, 1972; De Leeuw et al., 1980). The orientation of
the base ring with respect to the sugar is given by the
torsion angle χ. Hence, a single nucleotide is represented
by eight variables. These are the parameters to be opti-
mized by means of the genetic algorithm (see Fig. 2).

Evaluation
In the present study the objective function takes the

form
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where rij is the distance between protons i and j in the trial
structure, lbij is the lower bound of the proton–proton dis-
tance restraint, ubij is the upper bound of the proton–pro-
ton distance restraint, rmsd is the root-mean-square differ-
ence and N is the number of proton–proton distance re-
straints. This objective function must be minimized. Hence,
the fitness is the reciprocal of the objective function.

Implementation
The genetic algorithm used in this study was developed
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with the toolbox GATES (Genetic Algorithm Toolbox for

TABLE 3
CONFIGURATIONAL SETTINGS FOR THE GENETIC AL-
GORITHM OPTIMIZATION OF THE METHYLENE-ACETAL-
LINKED THYMINE DIMER

Torsion angle ranges (°°)
ε 160–270
ζ 030–330
α 030–330
β 120–240
γ 020–100
χ 090–270
φ 032–44
P 100–200

Population
Size 100

Fitness scaling
Mode Linear static
Fitness offset 0.0
Scale factor 1.01

Selection
Mode Threshold
Elitist fraction 0.05
Threshold fraction 0.25

Crossover
Mode Uniform
Probability 0.90
Swaps 0.16

Mutation
Mode Distributed
Probability 0.04

TABLE 4
CONFIGURATIONAL SETTINGS FOR THE DGII CALCU-
LATIONS OF THE METHYLENE-ACETAL-LINKED THY-
MINE DIMER

Smooth
Triangle smoothing On
Triangle violation tolerance 0.01
Tetrangle strategy None

Embed
Uniform probability density On
Probability coefficient 0.5
Eigenvalue iteration 100
Eigenvalue iteration 0.001
Metrization Prospective
Embed dimension 4

Majorize
Guttman transform 10
Linear conjugate gradient transform 100
Linear conjugate gradient criterion 0.001
Scale centroid Off
Calculate Moore–Penrose inverse On
Moore–Penrose inversion criterion 0.001
Weighting scheme Constant
Overwrite structures On

Optimize
Dimension weight 0.20
Chirality weight 0.1
Lower maximum 10.0
Contact maximum 1.00
Dimension scaling 0.30
Upper weight limit 1.00
Error function form Full matrix
Extra radii 1.00

Simulated annealing
Initial temperature 1.00
Maximum heating 2.00
Maximum number of steps 500
Calculate initial energy Off
Initial energy 1000.0
Maximum temperature 200.0
Fail level 1.00
Atom mass 1000
Step size 2e−13

Conjugate gradient
Maximum iterations 250
Rms gradient 0.001

Global setup
Generate database On
Number of structures 75
Omega wobble 10
Increment files On

Evolutionary Search) (Lucasius and Kateman, 1993,
1994a,b). A large variety of genetic operators are avail-
able in GATES. The parsing procedure from torsion
angles to atomic coordinates (constant bond lengths and
bond angles), that is needed for the objective function,
was taken from the DENISE (Dna Evolutionary Noe
Interpretation system for Structure Elucidation) program
(Lucasius et al., 1991). This procedure was adapted to
allow a methylene-acetal linkage in the thymine dimer.
Equilibrium bond lengths and bond angles are well de-
fined in most force fields or literature on nucleic acids.
However, these values are to be used explicitly with their
specific force constants and force field. Therefore, they
cannot be used directly to constrain the geometry of the
modified thymine dimer trial structures in a genetic algo-
rithm optimization. It is possible to subject the complete
5'-d(GCGT^TT^TGCG)•d(CGCAAAACGC)-3' duplex to
energy minimization by means of a force field and extract
bond length and bond angle values from the minimized
structure. Not all the bond angles in the methylene-acetal
moiety are defined in the literature. A reasonable approx-
imation of these bond angles can be deduced by an ener-
gy minimization of the complete duplex by means of a
modified force field. We used the AMBER force field

(Weiner et al., 1986) with additional parameters for the
methylene-acetal moiety in the energy minimization of the
duplex. The bond angles around the methylene-acetal
linkage were measured in the minimized structure. They
are summarized in column 2 of Table 1. Because the
bond lengths did not differ significantly from standard
values, they are not indicated in Table 1.
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Data set

Fig. 3. Stereoscopic view of 10 superimposed structures of the methylene-acetal-linked dimer generated during initial distance geometry calculations
showing the least number of violations (hydrogens are not shown).

The NOE buildup data obtained for the duplex were
analyzed by means of an iterative relaxation matrix ap-
proach (IRMA) (Boelens et al., 1988,1989). Experimental
NOE data from a series of NOESY spectra taken at
mixing times of 50, 75, 105 and 145 ms were included for
approximately 300 proton–proton pairs. The coordinates
of a structure with B-DNA model geometry that was
subjected to energy minimization with the all-atom ver-
sion of the AMBER force field were used as a starting
structure in the first IRMA cycle. The resulting upper
and lower bounds were relaxed by 5% to allow for vari-
ous sources of errors in the distance determinations. With
the use of distance geometry calculations, 50 candidate
structures were generated fulfilling as closely as possible
these restraints. Special restraints were added to keep the
Watson–Crick base pairs intact. The five candidate struc-
tures with the lowest number of distance restraints viol-
ations were averaged. This averaged structure was refined
by energy minimization and subsequently used for the next
IRMA cycle. Convergence was reached after three cycles.
This procedure resulted in 56 IRMA refined proton–pro-
ton distance restraints for the methylene-acetal-linked
T4^T5 dimer. This set was extended to 63 restraints by
adding additional restraints to exclude potential rotamers
that were contradictory to the NOE data. The restraints
are depicted in Table 2.

Experimental

Configuration
Table 3 gives the configurational settings of the genetic

algorithm that is used in this study. The first entries con-
cern the torsion angle ranges. From the NOE data it
could be deduced that the γ torsion angles were restricted
to the gauche plus domain, the χ torsion angles to the anti
domain and the sugar rings in a South conformation. The
torsion angles were encoded by Gray coding (Caruana
and Schaffer, 1988). The genetic algorithm population
consisted of 100 trial structures. A threshold selection

criterion was used with an elitist fraction of 5% and a
threshold value of 25%. This means that the best 5% of
all the structures in the population are always selected in
the copy pool. The copy pool is filled further with bit
strings from the best 25% of the strings from the popula-
tion. Uniform crossover with a probability of 90% and a
swap rate of 16% was used. A mutation operator also
based on this principle was used with a probability of 4%.
The reader is referred to Lucasius and Kateman (1994a,b)
for a detailed reading on genetic algorithm configuration.

Initially the distance geometry calculations for T4^T5
were performed with a first-generation algorithm. The
calculations were repeated with a modern distance geom-
etry algorithm, i.e., a DGII package by Biosym (Biosym
Technologies, San Diego, CA, U.S.A., 1993). Like in the
initial distance geometry calculations, 75 structures were
generated. In the DGII case they were refined by 500
steps of simulated annealing. More than 500 steps of
simulated annealing did not lead to, e.g., lower maximum
violations and mean violations of the restraints. The
configurational settings for the DGII calculations are
depicted in Table 4.

Convergence
A genetic algorithm run is usually terminated when no

significant improvement of the bit strings is observed. The
simplest way is to monitor a ‘bestever’ structure or a ‘best
of the current population’ structure. When one of these
structures does not show any improvement during a
(large) number of generations, the algorithm is said to be
converged. In this case each genetic algorithm run delivers
a single (best) structure. However, this does not mean
that the complete population will resemble one of the best
structures. There can still be a large diversity in the popu-
lation (largely due to the mutation operator). In a dis-
tance geometry calculation an ensemble of structures is
produced. Usually a number of structures that fulfill the
distance restraints the best are superimposed to get an
impression of the conformational space spanned by the
available restraints. To compare the results of the genetic
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algorithm runs with the distance geometry calculations,

Fig. 4. Stereoscopic view of 10 superimposed (‘bestever’) structures of the methylene-acetal-linked dimer generated by a genetic algorithm using
10 different random seeds (hydrogens are not shown).

TABLE 5
AVERAGE BACKBONE TORSION ANGLES (°) OF THE METHYLENE-ACETAL-LINKED THYMINE DIMER (DETERMINED IN
VARIOUS WAYS) AND OF TWO DIFFERENT B-DNA ROTAMER FAMILIES

Torsion angle DG DGII GAa B(I)-DNA B(II)-DNA

ε 205 (5) 209 (1) 199 180 (13) 246 (17)
ζ 248 (4) 247 (2) 265 267 (12) 175 (14)
α 302 (3) 300 (1) 323 301 (12) 298 (18)
β 148 (7) 156 (1) 177 179 (10) 144 (10)
γ 065 (5) 056 (2) 033b 049 (9) 045 (11)
ε − ζ −43 (8) −38 (2) −66 −87 (17) 071 (22)

GA: genetic algorithm; DG and DGII: distance geometry and second-generation distance geometry.
a Because of the very small standard deviations on the torsion angles of the genetic algorithm structures, they are not depicted in the table.
b The average γ torsion angle value of T5 is given here; the average γ torsion angle value of T4 was 60.0.

we followed two strategies. First, we started several gen-
etic algorithms with identical configurational setting files.
However, they were initialized with a different random
seed value in the initialization stage. The ‘bestever’ struc-
tures resulting from these runs were superimposed. Here
the influence of the starting position in the search space
was investigated. Second, we started a single genetic algo-
rithm and let it run until it converged. Then we selected
bit strings from the population that had an objective
function value below a certain threshold. These structures
were also superimposed. Here we investigated the diver-
sity among structures that had a low objective function
value. Because T4^T5 is so well defined by the distance
restraints, we expected little diversity in bit strings that
had low objective function values. In other words, only
one solution was expected for different initializations of
the genetic algorithm. To circumvent this we defined two
additional experiments. In the first additional experiment
we relaxed the available restraints by 10%. Then 10 struc-
tures (with low objective function values) of a population
that had converged were superimposed. In the second
additional experiment we randomly removed restraints
from the data set step-by-step. Here 10 structures that
had converged to such a reduced restraints set were super-
imposed.

Hardware
Genetic algorithm versions for conformational analysis

are available for SUN SparcTM, Silicon Graphics and PC
platforms. The experiments in this study were performed
on a SUN Sparc Ultra workstation. Convergence was
typically reached within 1000 generations, which took
approximately 55 CPU seconds. The DGII calculations
were performed on a Silicon Graphics Indigo R4600 with
the INSIGHT II package from Biosym/Molecular Simula-
tions.

Results and Discussion

Figure 3 shows a stereo plot of the 10 best structures
from the initial distance geometry calculations. The aver-
age backbone torsion angles (plus a standard deviation)
for these structures are shown in column 2 of Table 5.
Ten ‘bestever’ structures that resulted from 10 genetic
algorithm runs, started with different random seeds, are
depicted in the stereo plot of Fig. 4.

As expected, these structures are virtually the same.
Column 4 of Table 5 shows the average backbone torsion
angles of these genetic algorithm structures. Columns 5
and 6 of Table 5 give the average backbone torsion angles
of the regular B(I)-DNA rotamers and the less common
B(II)-DNA rotamers. They are calculated from the crystal
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structures of 20 selected B-DNA decamers and dodeca-

Fig. 5. Stereoscopic view of 10 superimposed structures of the methylene-acetal-linked dimer generated during DGII distance geometry calculations
showing the least number of violations (hydrogens are not shown).

Fig. 6. Stereoscopic view showing 10 superimposed (‘bestever’) structures of the methylene-acetal-linked dimer generated by a genetic algorithm
using 10 different random seeds with the original restraints (black line, compare with Fig. 4) and 10 superimposed structures generated by a genetic
algorithm with low objective function values when the restraints were relaxed by 10% (other lines).

mers that are present in the Nucleic Acid Database Pro-
ject (Berman et al., 1992). Besides the individual back-
bone torsion angles, the ε−ζ difference is also shown as
an indicator of the B-DNA rotamer family.

The torsion angles that resulted from the distance
geometry calculations suggest that T4^T5 belongs to the
regular B(I)-DNA family of rotamers. However, the ε, ζ
and β torsion angles are somewhat biased towards a less
common B(II)-DNA conformation. The results of the
genetic algorithm optimization show a more pronounced
regular B(I)-DNA conformation.The average rmsd of the
10 genetic algorithm structures was 0.0026. The close re-
semblance of these structures (standard deviation 1.0e−05,
see Fig. 4) is an indication that the genetic algorithm is
not dependent on the starting point in the search space
spanned by the torsion angle ranges and available dis-
tance restraints. However, the 10 best initial distance
geometry structures all had lower rmsd values than the
genetic algorithm structures and hence fulfilled the dis-
tance restraints better. We were surprised that the genetic
algorithm did not find one of these structures, although
the torsion angle ranges used in the genetic algorithm
configurational settings included the torsion angles that
were found by the initial distance geometry calculations.

Therefore, an experiment was set up in which the tor-

sion angle ranges for the genetic algorithm were con-
strained to allow only structures that fell in the initial dis-
tance geometry structures category. Hence, the torsion
angle ranges for the genetic algorithm trial structures
were defined by the average torsion angles of the 10 best
distance geometry structures and their respective standard
deviations (see Table 5). Under these circumstances, the
‘bestever’ genetic algorithm structure had an rmsd of
0.0037. This suggests that there is a difference in geom-
etry between distance geometry structures and genetic
algorithm structures other than torsion angles. To verify
this, bond lengths and bond angles of the best initial
distance geometry structures were measured. The meas-
ured bond angles are shown in column 3 of Table 1.
These values clearly differ from those used in the genetic
algorithm optimization. It seems that during distance
geometry calculations, the bond angle geometry is some-
what distorted to fulfill the distance restraints. To verify
this, the best distance geometry structures were subjected
to energy minimization to see whether the distorted ge-
ometry would hold. It could be seen that in the first steps
of the minimization, the bond angles were relaxed back
to the original values. Simultaneously, however, the rmsd
increased during the minimization. The minimized dis-
tance geometry structures showed a higher degree of
violations than the genetic algorithm structures. It dem-
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onstrates that, although distance geometry calculations of

Fig. 7. Stereoscopic view showing 10 superimposed (‘bestever’) structures of the methylene-acetal-linked dimer generated by a genetic algorithm
when reduced restraints sets were used. Up to 40 restraints were removed step-by-step in a random fashion. For restraints sets where more than
35 restraints were removed, sometimes ill-defined structures resulted. Therefore, optimized structures for restraints sets where 1, 2, 4, 8, 12, 16,
20, 24, 28 and 32 restraints, respectively, were removed are depicted.

the modified dimer can produce structures with small dis-
tance restraints violations, the bond angles are biased to-
wards the restraints, which is not desirable in most cases.

Because first-generation distance geometry packages
are known to produce structures of poor quality with
respect to bond lengths and bond angles, the calculations
were repeated with the DGII package. Ten structures that
fulfill the restraints well are superimposed in Fig. 5. They
resemble the initially found distance geometry structures
(see column 3 of Table 5). Also the rmsd values are com-
parable with the initially found structures. However, as
can be seen in Table 1 even after 500 steps of simulated
annealing some extreme values for bond angles around
the methylene-acetal linkage are found. The genetic algo-
rithm does not have this drawback. However, the prob-
lem with the genetic algorithm is the extreme convergence
to a specific solution.

Hence, an additional point that is addressed is the
sampling behavior of the genetic algorithm optimization.
Within a population the diversity among structures can
be quite high. We drew up an inventory of the individual
bit strings in the population and selected bit strings that
had an rmsd < 0.0030. In this way we could see whether,
among the structures with a low rmsd, different confor-
mations were present. The structures with rmsd < 0.0030
all resembled to a high degree the structures depicted in
Fig. 4. Obviously, the available distance restraints force
the genetic algorithm to converge to a family of structures
that are virtually the same. When the restraints are re-
laxed by 10%, some variability is introduced in genetic
algorithm structures as can be seen in Fig. 6. However,
the variability among structures with a comparable low
objective function value is not large. This may be attri-
buted to the rather tight original restraints, which on
relaxation by only 10% remain rather tight. However, it
is clear that there is variability between the group of
structures that were optimized with the original restraints
and the group of structures that were optimized with the

restraints that were relaxed by 10% (the pairwise rmsd for
atom positions was greater than 0.35 in all cases). Obvi-
ously, DGII calculations with the restraints that were
relaxed resulted in a larger variability in structures, but it
also resulted in a larger variability in bond angles. As can
be seen in column 5 of Table 1, the mean bond angles are
acceptable but the standard deviation is large. This means
that bond angles in some of the structures had rather
extreme values. Finally, in Fig. 7 a superposition of 10
‘bestever’ genetic algorithm structures optimized for re-
duced sets of restraints is depicted. Here it can be seen
that when, by chance, a ‘tight restraint’ is removed from
the restraints set, a change in ‘bestever’ structure occurs.

Conclusions and Outlook

We compared distance geometry calculations and gen-
etic algorithm optimization in the structure determination
of a methylene-acetal-linked thymine dimer with NMR-
derived distance restraints. The geometry around the
bond angles plays an important role. Distance geometry
calculations produce structures that fulfill the restraints to
a reasonable degree, but unreliable bond angles are found.
Especially the bond angles around the central carbon in
the methylene-acetal linkage differ from the expected
tetrahedral geometry. In this study, it appears that the
genetic algorithm optimization of torsion angles with
fixed bond angles taken from an energy-minimized duplex
yields more reliable results. It has to be stressed that in
comparing structures produced by both genetic algorithm
optimization and distance geometry calculations, only
structures that fulfill the restraints well are superimposed.
Obviously, the genetic algorithm structures showed little
variability. Selecting 10 structures that fulfill restraints the
best from an ensemble of 75 distance geometry structures
also leads to a set with little variability. However, it is a
proper way to study the bond angle geometry of the
optimized structures, especially the geometry around the
methylene-acetal linkage.
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The genetic algorithm optimization in torsion angle
space suggests a three-dimensional spatial structure of the
methylene-acetal-linked thymine dimer that is in the reg-
ular B(I)-DNA rotamer domain. These structures show
slightly larger violations of the distance restraints than the
distance geometry structures. However, the user now has
influence on the choice of the bond angle geometry of,
e.g., the methylene-acetal linkage. A comparison of the
violations by the distance geometry structure and the
violations by the genetic algorithm structure might lead
to the detection of possible inconsistencies in the distance
restraints file. The fact that all genetic algorithm struc-
tures converge to a similar family of conformations of the
regular B(I)-DNA rotamer might also give a clue on how
to relax the IRMA-derived restraints more. For example,
in the genetic algorithm structures α always converges to
a rather high value, while γ of T5 always converges to a
rather low value. Optionally, it seems interesting to try
and optimize the bond angles that define the geometry
around the central carbon atom in the methylene-acetal
linkage by means of the genetic algorithm. For this pur-
pose the bond angles can be taken as additional parame-
ters on the bit strings. Under the assumption of a tetra-
hedral geometry, the sum of the six bond angles around
the central carbon of the methylene-acetal linkage must
add up to 6·arccos(−1/3). Preliminary results using this
approach are promising.
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